首页> 外文OA文献 >Thermo-visual feature fusion for object tracking using multiple spatiogram trackers
【2h】

Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

机译:热视觉特征融合,使用多个Spatialogram Tracker进行对象跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework.
机译:在本文中,我们提出了一个框架,该框架可以基于融合多个Spatialogram Tracker的输出来有效地组合用于鲁棒跟踪的功能。这是在没有其他多模式跟踪方法遭受的存储和处理指数增长的情况下实现的。该框架允许在跟踪器之间任意分割要素,并提供添加,删除或动态加权要素的灵活性。我们为框架推导了均值漂移类型算法,该算法允许以非常低的计算开销进行有效的对象跟踪。我们特别将热红外和可见光谱的融合作为自动监控应用中最有用的功能。结果显示在多模式视频序列上,清楚地说明了使用我们的框架组合多个功能的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号